Solar Power Optimizer for DC Distribution System

Leander J. Ataide, Goa College of Engineering; Aditi A. Desai, Goa College of Engineering

PV, SPO, BOOST

Solar Power Optimizer(SPO) for DC Distribution System comprises of a high step-up solar power optimizer (SPO) which efficiently harvests maximum energy from a photovoltaic (PV) panel, energy is output to a dc-micro grid. It integrates coupled inductor and switched capacitor technologies to realize high step-up voltage gain. The leakage inductance energy of the coupled inductor can be recycled to reduce power losses and voltage stress. A low low-conduction resistance and voltage rating switch improves system efficiency by employing the fuzzy logic method for the (MPPT) maximum power point tracking algorithm. It has high tracking accuracy, hence the method is widely used to harvest energy of PV systems. The reduction in power caused by the existing shadow effect on PV panels is an unavoidable problem in a centralized PV system. The use of a micro inverter or ac module has recently been proposed for individual PV panels.
    [1] A. Ch. Kyritsis, E. C. Tatakis, and N. P. Papanikolaou, “Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 281–293, 2008. [2] Y. Fang and X. Ma, “A novel PV micro inverter with coupled inductors and double-boost topology,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3139–3147, 2010. [3] P. Tsao, “Simulation of PV systems with power optimizers and distributed power electronics,” in Proc. IEEE Photovolt. Spec. Conf., pp. 389– 393, 2010. [4] D. D.-C. Lu and V. G. Agelidis, “Photovoltaic-battery-powered DC bus system for common portable electronic devices,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 849–855, 2009. [5] A. Pratt, P. Kumar, and T. V. Aldridge, “Evaluation of 400 V DC distribution in telco and data centers to improve energy efficiency,” in Proc. IEEE Int. Telecommun. Energy Conf., pp. 32–39, 2007. [6] L. Zhang, K. Sun,Y. Xing, L. Feng, and H.Ge, “A modular grid-connected photovoltaic generation system based on DC bus,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 523–531, 2011. [7] S.M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A boost converter with capacitor multiplier and coupled inductor for AC module applications,” IEEE Trans. Ind. Electron., Early Access Articles, vol.60, no. 4, pp. 1503-1511, 2013HUANG KE-KUN, “Improved Set Partitioning in hierarchical trees algorithms based on adaptive coding order” journal of computer applications, 2012, 32(3):732-735. [8] A. C. Nanakos, E. C. Tatakis, and N. P. Papanikolaou, “A weighted efficiency- oriented design methodology of flyback inverter for AC photovoltaic modules,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3221–3233, 2012. [9] S. Zengin, F. Deveci, and M. Boztepe, “Decoupling capacitor selection in DCM fly-back PV micro-inverters considering harmonic distortion,” IEEE Trans. Power Electron., Early Access Articles, vol.28, no. 2, pp.816-825, 2013. [10] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 2, pp. 687–696, 2008. [11] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up Switching mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Trans. Syst. I, Fundam. Theory Appl., vol. 50, no. 8, pp. 1098–1102, 2003. [12] S. C. Tan, S. Bronstein, M. Nur, Y. M. Lai, A. Ioinovici, and C. K. Tse, “Variable structure modeling and design of switched-capacitor converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 2132– 2142, 2009. [13] G. Zhu and A. Ioinovici, “Switched-capacitor power supplies: DC voltage ratio, efficiency, ripple, regulation,” in Proc. IEEE Int. Symp. Circuits syst., pp. 553–556, 1996. [14] F. L. Luo, “Switched-capacitorized DC/DC converters,” in Proc. IEEE Conf. Ind. Electron. Appl., May 2009, pp. 1074–1079. [15] L. S.Yang, T. J. Liang, and J. F.Chen, “Transformerless DC-DC converters with high step-up voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144–3152, 2009. [16] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Transformerless DC-DC converters with a very high DC line-to-load voltage ratio,” in Proc. IEEE Int. Symp. Circuits syst., vol. 3, pp. 435–438, 2003. [17] F. L. Luo and H. Ye, “Positive output multiple-lift push-pull switched capacitor Luo-converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 594–602, 2004. [18] M. Zhu and F. L. Luo, “Enhanced self-lift cˆuk converter for negative-to positive voltage conversion,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2227–2233, 2010. [19] Y. Jiao, F. L. Luo, and M. Zhu, “Voltage-lift-type switched-inductor cells for enhancing DC-DC boost ability: Principles and integrations in Luo converter,” IET Trans. Power Electron., vol. 4, no. 1, pp. 131–142, 2011. [20] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, “High boost converter using voltage multiplier,” in Proc. Annu. IEEE Conf. Ind. Electron. Soc., pp. 567–572, 2005. [21] R. J.Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025–1035, 2005. [22] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up DC–DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007–2017, 2010. [23] S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A safety enhanced, high step-up DC-DC converter for AC photovoltaic module application,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1809–1817, 2012.
Paper ID: GRDJEV02I040096
Published in: Volume : 2, Issue : 4
Publication Date: 2017-04-01
Page(s): 58 - 63