A Study on Solar Thermophotovoltaic System

Rajesh. G, EASA College of Engineering and Technology, Coimbatore, Tamil Nadu; Dr. K. Sebasthi Rani ,EASA College of Engineering and Technology, Coimbatore, Tamil Nadu

STPV (Solar Thermal Photovoltaic), TPV (Thermo Photovoltaic) (Gasb) Gallium Antimonide, (PV) Photovoltaic, (IR) Infrared

STPV Technique is an abbreviation of Solar-Thermal Photo Voltaic system, in simple words; It is the technique in which Electricity is generated from heat waves. The different ways and steps involved in this techniques have been discussed also the recent studies on this topic has been overviewed in detail.
    [1] Kolm HH. Solar-battery power source. Q Prog Rep, 1956, 13. [2] Wedlock BD. Thermo-photo-voltaic 1conversion. Proc IEEE, 1963, 51, 694–698. [3] Black RE, Martin L, Baldasaro PF. Thermophotovoltaicsdevelopment status and parametric considerations for power applications. Thermoelectrics, 1999. Eighteenth International Conference on, 1999, 18, 639 – 644. [4] O’sullivan F, Celanovic I, Jovanovic N, Kassakian J, Akiyama S, Wada K. Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications. J Appl Phys, 2005, 97, 33529. [5] Swanson RM. A proposed thermophotovoltaic solar energy conversion system. Proc IEEE, 1979, 67, 446–447. [6] Rinnerbauer V, Lenert A, Bierman DM, et al. Metallic photonic crystal absorber-emitter for eflcient spectral control in high temperature solar thermophotovoltaics. Adv Energy Mater, 2014, [7] Lenert A, Bierman DM, Nam Y, et al. A nanophotonic solar thermophotovoltaic device. Nat Nanotechnol, 2014, 1, 1–5. [8] Zhang Q-C. High eflciency Al-N cermet solar coatings with double cermet layer film structures. J Phys D Appl Phys, 1999, 32, 1938–1944. [9] Würfel P, Ruppel W. Upper limit of thermophotovoltaic solarenergy conversion. IEEE Transactions on Electron Devices, 1980, 27, 745–750. [10] Shockley W, Queisser HJ. Detailed balance limit of eflciency of p-n junction solar cells. J Appl Phys, 1961, 32, 510–519. [11] Demichelis F, Minetti-Mezzetti E. A solar thermophotovoltaic converter. Sol Cells, 1980, 1, 395–403. [12] Edenburn MW. Analytical evaluation of a solar thermophotovoltaic (TPV) converter. Sol Energy, 1980, 24, 367–371. [13] Guazzoni GE. High-temperature spectral emittance of oxides of erbium, samarium, neodymium and ytterbium. Appl Spectrosc, 1972, 26, 60–65. [14] Höfler H, Paul HJ, Ruppel W, Würfel P. Interference filters for thermophotovoltaic solar energy conversion. Sol Cells, 1983, 10, 273–286. [15] Ortabasi U. Rugate technology for thermophotovoltaic (TPV) applications: a new approach to near perfect filter performance. Fifth Conference on Thermophotovoltaic Generation of Electricity, 2003, 653, 249–258. [16] Chubb DL. Reappraisal of solid selective emitters. IEEE Conf Photovolt Spec, 1990. [17] Spirkl W, Ries H. Solar thermophotovoltaics: An assessment. J Appl Phys, 1985, 57, 4409–4414. [18] Harder N-P, Würfel P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond Sci Technol, 2003, 18, S151–S157. [19] Bett AW, Keser S, Stollwerck G, Sulima O V, Wettling W. GaSbbased (thermo) photovoltaic cells with Zn diffused emitters. Conf Rec Twenty Fifth IEEE Photovolt Spec Conf 1996, 1996. [20] Fraas LM, Girard GR, Avery JE, et al. GaSb booster cells for over 30% eflcient solar-cell stacks. J Appl Phys, 1989, 66, 3866 [21] Stone KW, Leingang EF, Kusek SMM, Drubka REE, Fay TDD. On-Sun test results of McDonnell Douglas’ prototype solar thermophotovoltaic power system. Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), 1994, 2, 2010–2013. [22] Stone KW, Fatemi NS, Garverick LM. Operation and component testing of a solar thermophotovoltaic power system. Conf Rec Twenty Fifth IEEE Photovolt Spec Conf - 1996, 1996, 1421–1424. [23] Wanlass MW. Recent advances in low-bandgap, InP-based GaInAs/InAsP materials and devices for thermophotovoltaic (TPV) energy conversion. AIP Conf Proc, 2004, 738, 427–435. [24] Yugami H, Sai H, Nakamura K, Nakagawa N, Ohtsubo H. Solar thermophotovoltaic using Al2O3 / Er3/Al5/O12 eutectic Brought to you by | Purdue University Libraries Authenticated Download Date | 4/29/16 2:25 PM 18 | Zhiguang Zhou et al., Solar thermophotovoltaics: reshaping the solar spectrum composite selective emitter. Conf Rec Twenty-Eighth IEEE Photovolt Spec Conf 2000, 2000, 1, 1214–1217. [25] Datas A, Algora C, Zamorano JC, et al. A solar TPV system based on germanium cells. AIP Conference Proceedings, 2007, 890, 280–290. [26] Ungaro C, Gray SK, Gupta MC. Solar thermophotovoltaic system using nanostructures. Opt Express, 2015, 23, A1149. [27] Harder N-P, Green MA. Thermophotonics. Semicond Sci Technol, 2003, 18, S270. [28] Rephaeli E, Fan S. Absorber and emitter for solar thermophotovoltaic systems to achieve eflciency exceeding the Shockley-Queisser limit. Opt Express, 2009, 17, 15145–59. [29] Zhou Z, Chen Q, Bermel P. Prospects for high-performance thermophotovoltaic conversion eflciencies exceeding the Shockley–Queisser limit. Energy Convers Manag, 2015, 97, 63–69. [30] Kennedy C. Review of mid-to high-temperature solar selective absorber materials. NREL Tech Rep, 2002, 1617, 1–58. [31] Sathiaraj TS, Thangarj R, Sharbaty AA, Bhatnagar M, Agnihotri OP. Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500 C. Thin Solid Films, 1990, 190, 241. [32] Sergeant NP, Pincon O, Agrawal M, Peumans P. Design of wide-angle solar-selective absorbers using aperiodic metaldielectric stacks. Opt Express, 2009, 17, 22800–22812. [33] Rinnerbauer V, Yeng YX, Chan WR, et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Opt Express, 2013, 21, 11482–91. [34] Sai H, Kanamori Y, Yugami H. High-temperature resistive surface grating for spectral control of thermal radiation. Appl Phys Lett, 2003, 82, 1685. [35] Cuomo JJ, Ziegler JF, Woodall JM. A new concept for solar energy thermal conversion. Appl Phys Lett, 1975, 26, 557– 559. [36] Pellegrini G. Experimental methods for the preparation of selectively absorbing textured surfaces for photothermal solar conversion. Sol energy Mater, 1980, 3, 391–404. [37] Lehmann HW. Profile control by reactive sputter etching. J Vac Sci Technol, 1978, 15, 319. [38] Seraphin BO. Optical properties of solids: new developments. North Holland Publishing Co., Amsterdam, 1976. [39] Randich E, Allred DD. Chemically vapor-deposited ZrB2 as a selective solar absorber. Thin Solid Films, 1981, 83, 393– 398. [40] Agnihotri OP, Gupta BK. Solar selective surfaces. New York: Wiley-Interscience Pub, 1981. [41] Zhang Q, Mills DR. Very low-emittance solar selective surfaces using new film structures. J Appl Phys, 2006, 72, 3013– 3021. [42] Gao P, Meng LJ, Dos Santos MP, Teixeira V, Andritschky M. Study of ZrO2-Y2O3 films prepared by rf magnetron reactive sputtering. Thin Solid Films, 2000, 377–378, 32–36. [43] Arancibia-Bulnes CA, Estrada CA, Ruiz-Suárez JC. Solar absorptance and thermal emittance of cermets with large particles. J Phys D Appl Phys, 2000, 33, 2489–2496. [44] Niklasson GA, Granqvist CG. Selectively solar-absorbing surface coatings: optical properties and degradation. Materials science for solar energy conversion systems, Pergamon, Oxford, UK, 1991. [45] Chester D, Bermel P, Joannopoulos JD, Soljacic M, Celanovic I. Design and global optimization of high-eflciency solar thermal systems with tungsten cermets. Opt Express, 2011, 19, A245–57. [46] Messier R, Krishnaswamy S V., Gilbert LR, Swab P. Black a-Si solar selective absorber surfaces. J Appl Phys, 1980, 51, 1611. [47] Seraphin BO. Chemical vapor deposition of thin semiconductor films for solar energy conversion. Thin Solid Films, 1976, 39, 87–94. [48] Gilbert LR, Messier R, Roy R. Black germanium solar selective absorber surfaces. Thin Solid Films, 1978, 54, 149–157. [49] Mattox DM. Deposition of semiconductor films with high solar absorptivity. J Vac Sci Technol, 1975, 12, 182. [50] Bermel P, Ghebrebrhan M, Chan W, et al. Design and global optimization of high-eflciency thermophotovoltaic systems. Opt Express, 2010, 18, A314–A334. [51] Wang X, Li H, Yu X, Shi X, Liu J. High-performance solutionprocessed plasmonic Ni nanochain-Al 2O3 selective solar thermal absorbers. Appl Phys Lett, 2012, 101, 1–6. [52] Wu C, Neuner III B, John J, et al. Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic systems. J Opt, 2012, 14, 024005. [53] Guler U, Boltasseva A, Shalaev VM. Refractory plasmonics. Science (80), 2014, 344, 263–264. [54] Liu J, Guler U, Li W, Kildishev A, Boltasseva A, Shalaev VM. High-temperature plasmonic thermal emitter for thermophotovotaics. CLEO, 2014, 1, FM4C.5. [55] Yeng YX, Ghebrebrhan M, Bermel P, et al. Enabling hightemperature nanophotonics for energy applications. Proc Natl Acad Sci U S A, 2012, 109, 2280–5. [56] Ghebrebrhan M, Bermel P, Yeng YX, Celanovic I, Soljačić M, Joannopoulos JD. Tailoring thermal emission via Q matching of photonic crystal resonances. Phys Rev A, 2011, 83, 033810. [57] Joannopoulos JD, Johnson SG, Winn JN, Meade RD. Photonic crystals molding the flow of light. Second. Princeton, NJ: Princeton University Press, 2008. [58] Sergeant NP, Agrawal M, Peumans P. High performance solarselective absorbers using coated sub-wavelength gratings. Opt Express, 2010, 18, 5525–5540. [59] Chou JB, Yeng YX, Lenert A, et al. Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications. Opt Express, 2014, 22, A144–54. [60] Sai H, Yugami H, Kanamori Y, Hane K. Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Sol Energy Mater Sol Cells, 2003, 79, 35–49. [61] Fleming JG, Lin SY, El-Kady I, Biswas R, Ho KM. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature, 2002, 417, 52–5. [62] Rinnerbauer VR, Ausecker EL, Chäffler FS, Eininger PR, Trasser GS, Eil RDG. Nanoimprinted superlattice metallic photonic crystal as ultraselective solar absorber. 2015, 2, 18–21. [63] Mousazadeh H, Keyhani A, Javadi A, Mobli H, Abrinia K, Sharifi A. A review of principle and sun-tracking methods for maximizing solar systems output. Renew Sustain Energy Rev, 2009, 13, 1800–1818. [64] Chubb D, Pal A, Patton M, Jenkins P. Rare earth doped high temperature ceramic selective emitters. J Eur Ceram Soc, 1999, 19, 2551–2562. Brought to you by | Purdue University Libraries Authenticated Download Date | 4/29/16 2:25 PM Zhiguang Zhou et al., Solar thermophotovoltaics: reshaping the solar spectrum | 19 [65] Bitnar B, Durisch W, Mayor J-C, Sigg H, Tschudi HR. Characterisation of rare earth selective emitters for thermophotovoltaic applications. Sol Energy Mater Sol Cells, 2002, 73, 221–234. [66] Torsello G, Lomascolo M, Licciulli A, Diso D, Tundo S, Mazzer M. The origin of highly eflcient selective emission in rareearth oxides for thermophotovoltaic applications. Nat Mater, 2004, 3, 632–7. [67] Bitnar B, Durisch W, Holzner R. Thermophotovoltaics on the move to applications. Appl Energy, 2013, 105, 430–438. [68] Nam Y, Yeng YX, Lenert A, et al. Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters. Sol Energy Mater Sol Cells, 2014, 122, 287–296. [69] Celanovic I, Jovanovic N, Kassakian J. Two-dimensional tungsten photonic crystals as selective thermal emitters. Appl Phys Lett, 2008, 92, 193101. [70] Garín M, Hernández D, Trifonov T, Alcubilla R. Threedimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications. Sol Energy Mater Sol Cells, 2015, 134, 22–28. [71] Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett, 2011, 107, 045901. [72] Tobler WJ, Durisch W. Plasma-spray coated rare-earth oxides on molybdenum disilicide – High temperature stable emitters for thermophotovoltaics. Appl Energy, 2008, 85, 371–383. [73] Khan MR, Wang X, Sakr E, Alam MA, Bermel P. Enhanced selective thermal emission with a meta-mirror following Generalized Snell’s Law. MRS Proceedings, 2015, 1728. [74] Sakr ES, Zhou Z, Bermel P. High eflciency rare-earth emitter for thermophotovoltaic applications. Appl Phys Lett, 2014, 105, 111107. [75] Kohiyama A, Shimizu M, Kobayashi H, Iguchi F, Yugami H. Spectrally controlled thermal radiation based on surface microstructures for high-eflciency solar thermophotovoltaic system. Energy Procedia, 2014, 57, 517–523.–151. [76] C W. Li, X. He, “Review of Non-Isolated High Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications”, IEEE Transactions on Industrial Electronics, vol. 58, no. 4, April 2011. [77] Q. Zhao and F. C. Lee, “High-efficiency, high step-up DC–DC converters,” IEEE Transaction on Power Electronics, vol. 18, no. 1, pp. 65–73, Jan.2003. [78] R.-J. Wai and R.-Y. Duan, “High step-up converter with coupled-inductor,” IEEE Transaction on Power Electronics, vol. 20, no. 5, pp. 1025–1035, Sep. 2005. [79] G. Henn, R. Silva, P. Praça, L. Barreto D. Oliveira, “Interleaved Boost Converter with High Voltage Gain”, IEEE Transaction on Power Electronics, vol. 25, no. 11, pp. 2753–2761, Nov. 2010. [80] R. J. Wai, R. Y. Duan, “High-efficiency Power Conversion for Low Power Fuel Cell Generation System”, IEEE Transactions on Power Electronics, vol. 20, no.4, pp. 847-856, Jul 2005. [81] N.A. Rahim, J. Selvaraj, and C. Krismadenata,”Five-level inverter with reference modulation technique for grid-connected PV system” Elsevier, Renewable Energy, vol. 35 no. 3, pp. 712-720, March 2010. [82] D. Sera, R. Teodorescu, J. Hantschel, M. Knoll, ”Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions” IEEE Trans. Industrial Electronics, vol. 55, no. 7, pp. 2629-2637,Jul 2008. [83] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, M. Vitelli, ”Optimized One-Cycle Control in Photovoltaic Grid Connected Applications” IEEE Trans. Aerospace and Electronic Systems, vol. 42, no. 3, pp.954-972, Feb 2006. [84] M. Fortunato, A. Giustiniani, G. Petrone, G. Spagnuolo, M. Vitelli, ”Maximum Power Point Tracking in a One-Cycle-Controlled SingleStage Photovoltaic Inverter” IEEE Trans. Industrial Electronics, vol. 55, no. 7, pp. 2684-2693, Jul 2008. [85] P. Sanchis, A. Ursua, E. Gubia and L. Marroyo, ”Design and experimental operation of a control strategy for the buck-boost DC-AC inverter” IEE Proc.-Electr. Power Appl., vol. 152, no. 3, May 2005. [86] L. Bowtell, A. Ahfock, ”Direct current offset controller for transformerless single-phase photovoltaic grid-connected inverters” IET Renew. Power Generation, vol. 4, no. 5, pp. 428-437, 2010. [87] M.F. Naguib, and L.A.C. Lopes, ”Harmonics Reduction in Current Source Converters Using Fuzzy Logic” IEEE Trans. Power Electronics, vol. 25 no. 1, pp. 158-167, Jan 2010 [88] L. Hang, S. Liu, G. Yan, B. Qu, and Z. Lu, ”An Improved Deadbeat Scheme With Fuzzy Controller for the Grid-side Three-Phase PWM Boost Rectifier” IEEE Trans. Power Electronics, vol. 26, no. 4, pp.1184-1191, April 2011. [89] M. M. Rashid, N.A. Rahim, M.A. Hussain, and M.A. Rahman, ”Analysis and Experimental Study of Magnetorheological-Based Damper for Semiactive Suspension System Using Fuzzy Hybrids” IEEE Trans. Industry Applications, vol. 47 no. 2, pp. 1051-1059, March/April 2011. [90] M. Singh, and A. Chandra, ”Application of Adaptive Network-Based Fuzzy Inference System for Sensorless Control of PMSG-Based Wind Turbine with Nonlinear-Load-Compensation Capabilities” IEEE Trans. Power Electronics, vol. 26 no. 1, pp. 165-175, Jan 2011. [91] M.N. Uddin, and R.S. Rebeiro, ”Online Efficiency Optimization of a Fuzzy-Logic-Controller-Based IPMSM Drive” IEEE Trans. Industry Applications, vol. 47 no. 2, pp. 1043-1050, March/April 2011. [92] B.N. Alajmi, K.H. Ahmed, S.J. Finney, and B.W. Williams,”FuzzyLogic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System” IEEE Trans. Power Electronics, vol. 26 no. 4, pp. 1022-1030, April 2011. [93] T. Wu, Ch. Chang, and Y. Chen, ”A Fuzzy-Logic-Controlled SingleStage Converter for PV-Powered Lighting System Applications” IEEE Trans. Industrial Electronics, vol. 47, no. 2, pp. 287-296, April 2000. [94] N. Femia, G. Granozio, G. Petrone, and G. Spagnuolo, ”Predictive Adaptive MPPT Perturb and Observe Method” IEEE Trans. Aerospace And Electronic Systems, vol. 43, no. 3, pp. 934-950, Jul 2007. [95] V. Agarwal, R. Aggarwal, P. Patidar, and Ch. Patki, ”A Novel Scheme for Rapid Tracking of Maximum Power Point in Wind Energy Generation Systems” IEEE Trans. Energy Conversion, vol. 25, no. 1, pp.228-236, March 2010. [96] M. Pucci, and M. Cirrincione, ”Neural MPPT Control of Wind Generators with Induction Machines Without Speed Sensors” IEEE Trans.Industrial Electronics, vol. 58, no. 1, pp. 37-47, Jan 2011. [97] A. Yazdani and P. Dash,”A Control Methodology and Characterization of Dynamics for a Photovoltaic (PV) System Interfaced With a Distribution Network” IEEE Trans. Power Delivery, vol. 24, no. 3, pp.1538-1551, Jul 2009.
Paper ID: GRDCF007026
Published in: Conference : National Conference on Emerging Trends in Electrical, Electronics and Computer Engineering (ETEEC - 2018)
Page(s): 143 - 150