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   Abstract  

 

STPV Technique is an abbreviation of Solar-Thermal Photo Voltaic system, in simple words; It is the technique in which Electricity 

is generated from heat waves. The different ways and steps involved in this techniques have been discussed also the recent studies 

on this topic has been overviewed in detail.  
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I. INTRODUCTION 

Thermophotovoltaic (TPV) energy conversion is a direct conversion process from heat to electricity via photons. A basic 

thermophotovoltaic system consists of a thermal emitterand a photovoltaic diode cell. The temperature of the thermal emitter varies 

between different systems from about 900 °C to about 1300 °C, although in principle TPV devices can extract energy from any 

emitter with temperature elevated above that of the photovoltaic device (forming an optical heat engine). The emitter can be a 

piece of solid material or a specially engineered structure. Thermal emission is the spontaneous emission of photons due to thermal 

motion of charges in the material. For these TPV temperatures, this radiation is mostly at near infrared and infrared frequencies. 

The photovoltaic diodes absorbs some of these radiated photons and converts them into electricity. Thermophotovoltaic systems 

have few to no moving parts and are therefore quiet and require little properties make thermophotovoltaic systems suitable for 

remote-site and portable maintenance. These electricity-generating applications. Their efficiency-cost properties, however, are 

often poor compared to other electricity-generating technologies. Current research in the area aims at increasing system efficiencies 

while keeping the system cost low. TPV systems usually attempt to match the optical properties of thermal emission (wavelength, 

polarization, direction) with the most efficient absorption characteristics of the photovoltaic cell, since unconverted thermal 

emission is a major source of inefficiency. Most groups focus on gallium antimonide (GaSb) cells. Germanium (Ge) is controlling 

the emitter's properties. TPV cells have been proposed as auxiliary power conversion devices for capture of otherwise lost heat in 

other power also suitable. Much research and development concerns methods for generation systems, such as steam turbine systems 

or solar cells. A prototype TPV hybrid car was built, the "Viking 29"[2] (TPV) powered automobile, designed and built by the 

Vehicle Research Institute (VRI) at Western Washington University. TPV research is an active area. Among others, the University 

of Houston TPV Radioisotope Power Conversion Technology development effort is attempting to combine a thermophotovoltaic 

cell with thermocouples to provide a 3 to 4-fold improvement in system efficiency over current radioisotope thermoelectric 

generators. 

II. DIFFERENCE BETWEEN CONVENTIONAL PHOTOVOLTAICS AND THERMOPHOTOVOLTAICS 

General photovoltaic cells are influenced by visible light of solar spectrum which has short wavelength, this happens because of 

the band gap in photovoltaic cells. Thermal radiation has longer wave length than visible light in solar spectrum, So different solar 

cells with different band gap can be used to convert these thermal radiations of the solar spectrum. Now multi junction cells have 

been developed to convert the maximum wave length of the solar spectrum In multi junction cells different materials are used to 

form different junctions so that it can provide different band gap for different  wave length of the spectrum, Solar irradiation 

contains less than half of the solar spectrum. Conventional solar photo voltaic cells convert only visible light into electricity. 

III. OPERATING PRICIPLES OF STPV 

A new approach to harvesting solar energy, could improve efficiency by using sunlight to heat a high-temperature material whose 

infrared radiation would then be collected by a conventional photovoltaic cell. This technique could also make it easier to store the 

energy for later use, It is found that a new way is opened .In this case, adding the extra step improves performance, because it 

makes it possible to take advantage of wavelengths of light that ordinarily go to waste. A conventional silicon-based solar cell 

“doesn’t take advantage of all the photons,” That’s because converting the energy of a photon into electricity requires that the 
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photon’s energy level match that of a characteristic of the photovoltaic (PV) material called a band gap. Silicon’s band gap responds 

to many wavelengths of light, but misses many others. To address that limitation, a two-layer absorber-emitter device is used and 

it is made of novel materials including carbon nanotubes and photonic crystals between the sunlight and the PV cell. This 

intermediate material collects energy from a broad spectrum of sunlight, heating up in the process. When it heats up, as with a 

piece of iron that glows red hot, it emits light of a particular wavelength, which in this case is tuned to match the bandgap of the 

PV cell mounted nearby. This basic concept has been explored for several years, since in theory such solar thermophotovoltaic 

(STPV) turns it to heat. This layer is bonded tightly to a layer of a photonic crystal, which is precisely engineered so that when it 

is heated by the attached layer of nanotubes, it “glows” with light whose peak intensity is mostly above the bandgap of the adjacent 

PV, ensuring that most of the energy collected by the absorber is then turned into electricity. It is found that this device produces 

peak efficiency when its intensity was equivalent to a focusing system that concentrates sunlight by a factor of 750. This light 

heated the absorber-emitter to a temperature of 962 degrees Celsius. Systems could provide a way to circumvent a theoretical limit 

on the energy-conversion efficiency of semiconductor-based photovoltaic devices. That limit, called the Shockley-Queisser limit, 

imposes a cap of 33.7 percent on such efficiency, but it is possible that with TPV systems, “the efficiency would be significantly 

higher — it could ideally be over 80 percent. “There have been many practical obstacles to realizing that potential; previous 

experiments have been unable to produce a STPV device with efficiency of greater than 1 percent. But Lenert, Wang, Associate 

professor of Physics and their team have already produced an initial test device with a measured efficiency of 3.2 percent, and they 

say with further work they expect to be able to reach 20 percent efficiency - enough, they say, for a commercially viable product. 

The design of the two-layer absorber-emitter material is key to this improvement. Its outer layer, facing the sunlight, is an array of 

multiwalled carbon nanotubes, which very efficiently absorbs the light’s energy and. This level of concentration is already much 

lower than in previous attempts at STPV systems, which concentrated sunlight by a factor of several thousand. But the MIT 

researchers say that after further optimization, it should be possible to get the same kind of enhancement at even lower sunlight 

concentrations, making the systems easier to operate. Such a system, the team says, combines the advantages of solar photovoltaic 

systems, which turn sunlight directly into electricity, and solar thermal systems, which can have an advantage for delayed use 

because heat can be more easily stored than electricity. The new solar thermophotovoltaic systems, they say, could provide 

efficiency because of their broadband absorption of sunlight; scalability and compactness, because they are based on existing chip-

manufacturing technology; and ease of energy storage, because of their reliance on heat. Some of the ways to further improve the 

system are quite straightforward. Since the intermediate stage of the system, the absorber-emitter, relies on high temperatures, its 

size is crucial: The larger an object, the less surface area it has in relation to its volume, so heat losses decline rapidly with increasing 

size. The initial tests were done on a 1-centimeter chip, but follow-up tests will be done with a 10-centimeter chip, they 

say.Zhuomin Zhang, a professor of mechanical engineering at the Georgia Institute of Technology who was not involved in this 

research, says, “This work is a breakthrough in solar thermophotovoltaics, which in principle may achieve higher efficiency than 

conventional solar cells because STPV can take advantage of the whole solar spectrum. 

IV. ENERGY TRANSPORT IN STPV 

In an STPV system solar energy spectrum is allowed to pass through an absorber, the absorber absorbs solar spectrum wavelengths 

of solar spectrum into low grade heat energy. This heat energy will be emitted from emitter which is internally coupled to the 

absorber in turn the photons those are emitted by the emitter the excite the ordinary PV cell which can convert the energy of photon 

into electricity. The intermediate and the most important part of the system is emitter that can emit the photons with definite 

wavelength which is suitable for PV cells. As soon as the infrared wavelengths along with visible spectrum has been made incident 

on the absorber. Heat energy will be produced by the action of emitters.Afer the complete conversion of solar spectrum into heat 

it becomes impossible to convert this heat into useful work in 100 %( second law of thermodynamics), that fades the efficiency of 

the system. 

 
Fig. 1: STPV System solar energy 



A Study on Solar Thermophotovoltaic System  
(GRDJE / CONFERENCE / ETEEC - 2018 / 026) 

 

 145 All rights reserved by www.grdjournals.com 

Photovoltaic thermal hybrid solar collectors, sometimes known as hybrid PV/T systems or PVT, are systems that convert 

solar radiation into thermal and electrical energy. These systems combine a solar cell, which converts sunlight into electricity, with 

a solar thermal collector, which captures the remaining energy and removes waste heat from the PV module. And thus be more 

overall energy efficient than solar photovoltaic (PV) or solar thermal alone. A significant amount of research has gone into 

developing PVT technology since the 1970s. As thermal radiation, which is subsequently converted into electron-hole pairs via a 

low-band gap photovoltaic (PV) medium; these electron Photovoltaic cells suffer from a drop in efficiency with the rise in 

temperature due to increased resistance. Such systems can be engineered to carry heat away from the PV cells thereby cooling the 

cells and thus improving their efficiency by lowering resistance. Although this is an effective method, it causes the thermal 

component to under-perform compared to a solar thermal collector. 

V. PRINCIPLE OF ABSORPTION 

This system converts sunlight into electricity by absorbing solar photons as heat, which are then emitted -hole pairs are then 

conducted to the leads to produce a current [1– 4]. Originally proposed by Richard Swanson to incorporate a blackbody emitter 

with a silicon PV diode [5], the basic system operation is shown in Figure 2. However, there is potential for substantial loss at each 

step of the process, particularly in the conversion of heat to electricity. This is because according to Wien’s law, blackbody emission 

peaks at wavelengths of 3000 µm•K T , for example, at 3 µm at 1000 K. Matched against a PV diode with a band edge wavelength 

λg < 2 µm, the majority of thermal photons have too little energy to be harvested, and thus act like parasitic losses. This 

phenomenon often reduces STPV system efficiencies well below those of their PV brethren. If efficiencies could be substantially 

improved, new applications such as solar power with integrated storage would open up. 

 
Fig. 2: Principle of Absorption 

In modular design of a STPV system, such as the one shown in Figure 2 [6], the system efficiency of conversion could 

be splitted down as a product of three component efficiencies [7]: 

ηSTPV = ηoηtηtpv 

Here ηo is the concentration efficiency, governed by the concentrating optics, ηt is the thermal transfer efficiency of light 

into usable heat [8] and ηtpv is the TPV efficiency of converting heat to electricity. Yet it is essential to denote that these independent 

terms still interact within the same system, and thus have many linkages, such as temperature, energy flux, and environmental 

conditions. The initial theoretical development and improvement of STPV proceeded over the course of several years. Using 

Richard Swanson’s theory as a baseline [5], the first key condition for improving the system was to use a lower band gap PV cell 

than crystalline–silicon (c-Si). It is belived that up to 65% efficiency would be possible with the use of a semiconductor having a 

band gap of 0.8 eV [9], which is about twice the Shockley–Queisser limit for a single junction PV cell [10]. The primary reason is 

that many more thermal photons could be harvested with a lower band gap, which greatly reduces sub-band gap losses. The next 

key insight is to develop selective emitters that offer substantially different emission profiles than a blackbody [9, 11, 12]. It could 

be seen early on that creating a selective thermal emitter that only emits thermal photons at or above the energy of the PV diode 

could wholly eliminate sub-band gap losses, although it would be a difficult goal. Experimentally, selective emitter materials such 

as rareearth oxides (e.g., erbium oxide and ytterbium oxide [13]), as well as dielectric coatings on refractory metals (e.g., tungsten 

[W]) were shown to have potential for enhanced selectivity [14]. The third key insight was to introduce selective filters, in which 

a real selective emitter with less than-perfect selectivity could have sub-band gap photons returned to the emitter whence they 

came [4, 14, 15]. Subsequent calculations pointed toward experiments combining all three innovations [16]. On the strength of 

these results, it was subsequently re-estimated that in fact, STPV systems could in principle approach 85% conversion of sunlight 

to electricity under maximal concentration [17], a conclusion also reinforced by more recent work [18]. Developing integrated 

STPV systems to achieve even a fraction of the projected performance required significant advances in fabrication and 

characterization. A particularly key development was the adoption of a high-performance, low-band gap PV cell, made from 

Zndiffused gallium antimonide (GaSb) in the late 1980s and early 1990s [19, 20]. Another key development in 1994 allowed STPV 

systems to reach sustained temperatures up to 1350∘ C [21]. Reliable operation for hundreds of hours over 1200∘ C, with up to 

29% conversion of selected thermal emission to electricity was achieved shortly thereafter [22]. Within a decade, it was shown 

that the key underlying process of heat-to-electricity conversion could exceed 23% efficiency in experiment [23]. In recent years, 

there has been a competition to fully integrate and quantify the effects of using sunlight as the exclusive source of heat, and to 
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improve overall STPV conversion efficiencies toward theoretical limits. Early system level STPV results from Tohoku University 

in Japan [24] and Technical University of Madrid in Spain [25] reported experimental efficiencies below 1%. However, by 2013, 

an MIT group had achieved 3.2% efficient conversion [7]. Most recently, a collaboration out of Virginia and Argonne National 

Laboratories achieved 6.2% efficiency [26], although the test was performed with a 300 W laser diode source in lieu of direct solar 

simulation. 

VI. PRINCIPLES OF SELECTION 

The above work is not addressed how to gain higher efficiencies, particularly those above the Shockley–Queisser limit of 31% 

[10]; the key problem has been a requirement for unrealistic alignment of emitter and receiver. Careful modeling of such designs 

suggests that it may be possible to strongly concentrate thermal emission into a much narrower range of photon energies. In fact, 

an integrated strategy could eliminate a separate filter, while achieving higher performance. This approach gives rise to a new type 

of thermal conversion known as thermo photonics [27]. This term indicates that emitted photons will always have energy above a 

nontrivial band gap value. If typical sub-band gap and carrier thermalization losses due to above-band gap absorption can be 

strongly suppressed or even eliminated with this approach, extremely high heat-to-electricity power conversion efficiencies up to 

50% could be achieved [28], well in excess of both the single junction and tandem-junction Shockley–Queisser limits for PV cells 

[10]. This would be possible at 1300∘C for band gaps ranging from 0.7 to 1.1 eV, encompassing a wide range of PV materials 

including GaSb and c-Si [29].  

VII. SOLAR ABSORBER 

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material’s spectrum of absorption 

just right: It should absorb virtually all wavelengths of light that reach Earth’s surface from the sun — but not much of the rest of 

the spectrum, since that would increase the energy that is reradiated by the material, and thus lost to the conversion process.Now 

researchers at MIT say they have accomplished the development of a material that comes very close to the “ideal” for solar 

absorption. The material is a two-dimensional metallic dielectric photonic crystal, and has the additional benefits of absorbing 

sunlight from a wide range of angles and withstanding extremely high temperatures. Perhaps most importantly, the material can 

also be made cheaply at large scales. 

The creation of this material is described in a paper published in the journal Advanced Materials, co-authored by MIT 

postdoc Jeffrey Chou, professors Marin Soljacic, Nicholas Fang, Evelyn Wang, and Sang-Gook Kim, and five others. 

The material works as part of a solar-thermophotovoltaic (STPV) device: The sunlight’s energy is first converted to heat, which 

then causes the material to glow, emitting light that can, in turn, be converted to an electric current. 

Some members of the team worked on an earlier STPV device that took the form of hollow cavities, explains Chou, of 

MIT’s Department of Mechanical Engineering, who is the paper’s lead author. “They were empty, there was air inside,” he says. 

“No one had tried putting a dielectric material inside, so we tried that and saw some interesting properties.” 

When harnessing solar energy, “you want to trap it and keep it there,” Chou says; getting just the right spectrum of both 

absorption and emission is essential to efficient STPV performance. 

Most of the sun’s energy reaches us within a specific band of wavelengths, Chou explains, ranging from the ultraviolet 

through visible light and into the near-infrared. “It’s a very specific window that you want to absorb in,” he says. “We built this 

structure, and found that it had a very good absorption spectrum, just what we wanted.” 

In addition, the absorption characteristics can be controlled with great precision: The material is made from a collection 

of nanocavities, and “you can tune the absorption just by changing the size of the nanocavities,” Chou says. 

Another key characteristic of the new material, Chou says, is that it is well matched to existing manufacturing technology. 

“This is the first-ever device of this kind that can be fabricated with a method based on current … techniques, which means it’s 

able to be manufactured on silicon wafer scales,” Chou says-up to 12 inches on a side. Earlier lab demonstrations of similar systems 

could only produce devices a few centimeters on a side with expensive metal substrates, so were not suitable for scaling up to 

commercial production, he says. 

In order to take maximum advantage of systems that concentrate sunlight using mirrors, the material must be capable of 

surviving unscathed under very high temperatures, Chou says. The new material has already demonstrated that it can endure a 

temperature of 1,000 degrees Celsius (1,832 degrees Fahrenheit) for a period of 24 hours without severe degradation. And since 

the new material can absorb sunlight efficiently from a wide range of angles, Chou says, “we don’t really need solar trackers” — 

which would add greatly to the complexity and expense of a solar power system. “This is the first device that is able to do all these 

things at the same time,” Chou says. “It has all these ideal properties. “While the team has demonstrated working devices using a 

formulation that includes a relatively expensive metal, ruthenium, “we’re very flexible about materials,” Chou says. “In theory, 

you could use any metal that can survive these high temperatures. “This work shows the potential of both photonic engineering  

and materials science to advance solar energy harvesting,” says Paul Braun, a professor of materials science and engineering at the 

University of Illinois at Urbana-Champaign, who was not involved in this research. “In this paper, the authors demonstrated, in a 

system designed to withstand high temperatures, the engineering of the optical properties of a potential solar thermophotovoltaic 

absorber to match the sun’s spectrum. Of course much work remains to realize a practical solar cell, however, the work here is one 
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of the most important steps in that process. “The group is now working to optimize the system with alternative metals. Chou 

expects the system could be developed into a commercially viable product within five years. He is working with Kim on 

applications from this project.The team also included MIT research scientist Ivan Celanovic and former graduate students Yi Yeng, 

Yoonkyung Lee, Andrej Lenert, and Veronika Rinnerbauer. The work was supported by the Solid-State Solar Thermal Energy 

Conversion Center and the U.S. Department of Energy. 

Solar absorber converts solar radiation into thermal energy in its first stage of operation. A main challenge is making a 

solar absorber that can both absorb broadband solar radiation and suppress re-radiation at high temperature. Previous work used 

near-blackbody absorbers [30] like array of multi-walled carbon nanotubes [7] has very strong absorptance over a broad spectral 

range. However, their nonselective absorption also allows re-radiation over infrared (IR) wavelengths at high temperatures. 

Therefore, a selective solar absorber that has strong absorptance around the peak of AM 1.5 spectrum, yet weak absorptance at 

longer wavelengths, is preferred for high-performance STPV. There are several types of selective solar absorbers that are suitable 

for STPV applications, including metal dielectric composites, semiconductor–metal tandems, plasmonic absorbers, and one-

dimensional (1D)/two dimensional (2D)/three-dimensional (3D) photonic crystals (PhCs). Among the listed selective absorbers, 

metal dielectric composites and semiconductor–metal tandems have similar thermal conversion efficiencies at temperatures higher 

than 700 K [8, 31]. One-dimensional aperiodic multilayer PhCs follow closely behind, but have more complex structures [32]. For 

plasmonic absorbers and 2D or 3D PhCs, the slightly higher thermal emittance decreases their thermal transfer efficiencies at high 

temperatures. It is also relatively more challenging to fabricate plasmonic absorbers and 2D or 3D PhCs that are durable for high 

temperature operations [33, 34]. Other types of selective solar absorbers that have been previously considered in the literature, but 

are not explored here in detail, include textured absorbers [35–38] and intrinsic absorber materials [36, 38–40]. 3.1 Metal-dielectric 

composite selective solar absorbers Metal-dielectric composite solar absorber typically consists of cermet layers deposited on 

metallic substrates. A cermet consists of nanoscale metal particles embedded within ceramic binders [30]. Typical ceramic binder 

materials include alumina (Al2O3) [41], silicon dioxide (SiO2), aluminum oxynitride (AlON) [8] and zirconium dioxide (ZrO2) 

[42]. The cermet layer by itself has strong solar absorption and high transmission in the mid-IR. Combined with a metallic substrate, 

which is highly reflective at midand far-IR, the cermet offers both strong solar absorption and low thermal emittance. The cutoff 

of strong absorption and scattering in cermet can be tuned by the sizes of the metal particles. For example, larger particle sizes 

correspond to longer cutoff wavelengths [43]. The thickness of the cermet layer also needs to be carefully engineered. Thicker 

cermets lead to stronger solar and IR absorption [43]. Previously, a graded concentration of metal particles was proposed to improve 

solar absorption within the cermet by gradually increasing the refractive index of each cermet layer [30]. A single layer of graded 

Ni/Al2O3 on stainless steel was reported to have an averaged solar absorptance of 94%, and an averaged thermal emittance of only 

7% at 773 K [31]. It is also proposed that for Alsp-AlON (Al sputtered in AlON binder) cermet solar absorber, a tenlayer graded 

cermet can be simplified as a double-layer cermet, yielding 86% thermal transfer efficiency at 1 sun illumination and a temperature 

of 353 K [8]. Another type of cermet structure uses porous alumina as the ceramic binder. The pores are perpendicular to the 

metallic substrate and can be filled with nanoscale metal [nickel (Ni), vanadium (V), cobalt (Co), copper (Cu), chromium (Cr), 

molybdenum (Mo), silver (Ag), tungsten (W)] rods [44]. Finally, as shown in the simulated reflection spectra in Figure 3B, using 

W particles in an alumina binder multilayer structure (Figure 3A) is predicted to achieve up to ηt = 86% under 100 suns at 1000 K 

[45] 

VIII. CONCLUSION  

In this paper, STPV technique and application, efficiency obtained in solar energy converter has been explained and converters 

with slightly different efficiencies have been discussed from which it is simpler to compare them. The deep comparison of STPV 

in converter circuit gives immense knowledge about the design and performance of the circuits and new ways to analyze the 

different modes of energy converter. The data’s which obtained from internet and IEEE journals have been collected and presented 

here without the much loss from the fundamental concept. 
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