Catalytic Oxidation of Dopamine at A Copper Hexacyanoferrate Surface Modified GNP Graphite Wax Composite Electrode

G. Sivasankari, Department of Chemistry, Cauvery College for Women, Trichy -18; S. Boobalan ,Department of chemistry, J. J. College of Engineering and Tehnology; P. Santhi ,Department of Chemistry, Cauvery College for Women, Trichy -18; S. Dhanalakshmi ,Department of Chemistry, Cauvery College for Women, Trichy -18

GNP; Copper hexacyanoferrate; Dopamine.

A chemically modified electrode was successfully fabricated by means of depositing a thin layer of Copper hexacyanoferrate (CuHCF) on an amine adsorbed gold nanoparticle graphite paraffin wax composite electrode using a new approach. The electrochemical characteristics of the modified electrode were studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The modified electrode was able to catalyze dopamine (DA) and moreover was able to eliminate the electrode fouling caused by the electrochemical oxidation of dopamine at the bare electrode.. However when the modified electrode was further covered with a Nafion membrane, the interference could be diminished. The catalytic current for oxidation of dopamine at the modified electrode increased linearly with a concentration range of 3.5 x 10-6 to 1.4 x 10-3 M. of dopamine with a correlation coefficient of 0.999. The limit of detection was found to be 1.2x10-7M. Based on S/N=3. Flow injection analysis technique was used for the determination of dopamine and it was found that the electrode produced excellent reproducible results.
    [1] Yoon J.K., Kim K.,. Shin K.S, Raman scattering of 4-Aminobenzenethiol sandwiched between Au nanoparticles and a macroscopically smooth Au substrate: effect of size of Au nanoparticles, J. Phys. Chem C 113 (2009) 1769 – 1774. [2] Zhang H., Wang G., Chen D., Lv X., Li J., A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur, Chem. Mater. 20 (2008) 6543 - 6549. [3] Yamauchi Y., Takai A., Nagaura T., Inoue S., Kuroda K., Pt fibers with stacked donut like mesospace by assembling Pt nanoparticles: guided deposition in physically confined self-assembly of surfactants, J. Am Chem Soc 130 (2008) 5426 - 5427. [4] Luo X., Morrin A., Killard A.J.,. Smyth M.R, Application of nanoparticles in electrochemical sensors and biosensors. Electro analysis 18 (2006) 319 - 326. [5] Pingarron J.M, Sedeno P.Y., Cortes A.G., Gold nanoparticle-based electrochemical biosensors, Electrochim Acta 53 (2008) 5848 - 5466. [6] Pournaghi-Azhar M.H., Razmi-Nerbin H., Electroless preparation and electrochemistry of nickel-pentacyanonitrosylferrate film modified aluminum electrode, Electroanalysis 12 (2000) 209 - 215. [7] Cai C.X., Xue K. H., Xu S.M., Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation, J. Electroanal Chem 486 (2000) 111 - 118. [8] Garcia-Jareno J.J., Navarro J.J.,. Roig A.F, Scholl H., Vicente F., Impedance analysis of prussian blue films deposited on ITO electrodes, Electrochim Acta 40 (1995)1113 – 1119. [9] Malik M.A., Miecznikowski K., Kulesza P. J, Quartz crystal microbalance monitoring of mass transport during redox processes of cyanometallate modified electrodes: complex charge transport in nickel hexacyanoferrate films, Electrochim Acta 45 (2000) 3777 – 3784. [10] Neff V.D., Itaya K., Uchida I., Electrochemically of polynuclear transition metal cyanides: prussian blue and its analogues, Acc. Chem. Res. 19 (1986) 162 – 168. [11] Itaya K., Ataka T., Toshima S., Electrochemical preparation of a prussian blue analog: iron-ruthenium cyanide J. Am.Chem Soc. 104 (1982) 3751 – 3752. [12] Christensen P.A., Hamnett A., Higgins S.J. Soc, A study of electrochemically grown prussian blue films using fourier-transform infra-red spectra, J. Chem Dalton Trans (1990) 2233 – 2238. [13] Mortimer R. J.,. Rosseinsky Soc D. R, Iron hexacyanoferrate: spectrochemical distinction and electrodeposition sequence of soluble (K+ containing) and insoluble (K+ free) prussian blue, and composition changes in polyelectrochromic switching, J. Chem. Dalton Trans (1984) 2059 - 2061. [14] Ogura K., Nakayama M., Nakaoka K., Electrochemical quartz crystal microbalance and in situ infrared spectroscopic studies on the redox reaction of prussian blue, J. Electroanal. Chem. 474 (1999) 101 - 105. [15] Kulesza et al P.J, Electrochemical preparation and characterization of electrodes modified with mixed hexacyanoferrates of nickel and palladium, J. Electroanal. Chem 487 (2000) 57 -65. [16] Cui X., Hong L., Lin X., Electrochemical preparation, characterization and application of electrodes modified with hybrid hexacyanoferrates of copper and cobalt, J. Electroanal.Chem. 526 (2002) 115 - 124. [17] Fauci A.S., E. Braunwald, D.L. Kasper, S.L. Hauser, D.L. Longo, J.L. Jameson, J. Loscalzo, Harrison’s, principles of internal medicine, Mc-Graw Hills companies, (2008) 17th edn (Chapter 366) [18] Sivanesan A, Abraham S, John, Determination of l-dopa using electropolymerized 3,3′,3″,3″′ tetraaminophthalo cyanatonickel(II) film on glassy carbon electrode, Biosen Bioelectron 23 (2007) 708 – 713. [19] Bergamini M.F., Santos A.L., Stradiotto N.R, Zanoni M.V.B., A disposable electrochemical sensor for the rapid determination of levodopa, J. Pharm Biomed Anal 39 (2005) 54 - 59. [20] Kawde R.B., Laxmeshwar N.B., Santhanam K.S.V, A selective sensing of dopa in the presence of adrenaline, Sens Actuators B 23 (1995) 35 – 39. [21] Teixeira M.F.S, Marcolino-Junior L.H, Fatibello-Filho O., Dockal E.R, Bergamini M.F, An electrochemical sensor for L-dopa based on oxovana- dium-salen Thin film electrode applied flow injection system, Sens. Actuators B 122 (2006) 549 – 555. [22] Brown K.R, Walter D.G., Natan M.J., Seeding of colloidal Au nanoparticle solutions improved control of particle size and shape, Chem. Mater 12 (2000) 306 – 313. [23] Haiss W., Thanh N.T.K , Aveyard J., Fernig D.G., Determination of size and concentration of gold nanoparticles from uv-vis spectra, Anal. Chem 79 (2007) 4215 – 4221. [24] Torninaga M., Shimazoe T., Nagashima M., Kusuda H., Nkubo A., Kuwahara Y., Taniguchi I., Electro catalytic oxidation of dopamine at gold–silver alloy, silver and gold nanoparticles in an alkaline solution, J. Electroanal Chem 590 (2006) 37 – 46.
Paper ID: GRDJEV01I090073
Published in: Volume : 1, Issue : 9
Publication Date: 2016-09-01
Page(s): 39 - 45